Ranney, T.G. and M.M. Peet. 1994. Heat tolerance of five taxa of birch (*Betula*): Physiological responses to supraoptimal leaf temperatures. J. Amer. Soc. Hort. Sci. 119(2):243-248.

Ranney, T.G. and E.P. Whitman, II. 1995. Growth and survival of 'Whitespire' Japanese birch grafted on rootstocks of five species of birch. HortScience 30:521-522.

Flood Tolerant Prunus Through Grafting?®

Richard E. Bir and T. G. Ranney

North Carolina State University, 2016 Fanning Bridge Road, Fletcher, North Carolina 28732 U.S.A.

Considerable variation in tolerance to root-zone flooding exists within the genus *Prunus*. Research demonstrated the differences in defoliation and survival for 11 *Prunus* taxa (Ranney, 1994) as shown in Table 1.

The two taxa most tolerant of root zone flooding, F-12/1 mazzard cherry and 'Newport' plum, illustrate the potential for enhancing adaptability of less flood-tolerant *Prunus* such as Japanese apricot (*P. mume*) and Yoshino cherry (*P. ×yedoensis*) on poorly drained sites if they are grafted onto appropriate rootstocks. *Prunus avium* F-12/1, resistant to bacterial canker, is listed as compatible with *P. sargentii*, 'Yoshino', 'Okame', *P. ×subhirtella* 'Autumnalis', and 'Kanzan' cherries as

Taxon	Survival %	Defoliation %
Carolina cherrylaurel (Prunus caroliniana)	0 a	82 c
Canada red chokecherry (P. virginiana 'Canada Red')	43 b	100 d
P. mume 'Peggy Clark' (Japanese apricot)	50 b	95 cd
Japanese bushcherry (<i>P. japonica</i>)	50 b	52 b
P. sargentii	60 b	29 a
P. ×yedoensis	60 b	87 cd
P. 'Okame'	70 bc	80 c
P. ×subhirtella 'Autumnalis'	70 bc	52 b
P. 'Kanzan' Japanese cherry	90 cd	58 b
<i>P. avium</i> F-12/1 mazzard cherry	100 d	27 a
P. 'Newport' (Newport purpleleaf plum)	100 d	15 a

Table 1. Survival and defoliation of 11 taxa of *Prunus* for plants subjected toincremental flooding over 7 weeks.

Values are means of 7 to10 plants. Means followed by the same letter within a column are not significantly different P = 0.05. Survival was 100% for all nonflooded controls and defoliation was less than 7% for all nonflooded controls.

well as other Higan cherries (*P. ×subhirtella*), *P. serrulata, P. ×schmittii,* and *P.* 'Hillieri' (Macdonald, 1986).

Demand for winter-flowering Japanese apricot cultivars has outstripped supply in the southeastern U.S.A., partly due to difficulties in producing own-root transplants via rooted cuttings. The potential for Japanese apricot to be grafted onto 'Newport' plum or other myrobalan plums and hybrids is suggested by these research results. 'Newport' is a complex hybrid which includes a heritage of *P. salicina, P. americana, P. nigra*, and *P. cerasifera*. However, cultivar specific incompatibility problems may exist. The Japanese apricot cultivar 'Kobai' is reported to be compatible but the cultivar 'White Fast' is not compatible with *P. cerasifera* (Keith Warren, pers. comm.).

LITERATURE CITED

- Macdonald, B. 1986. Practical woody plant propagation for nursery growers. Timber Press, Portland, Oregon.
- Ranney, T.G. 1994. Differential tolerance of eleven *Prunus* taxa to root zone flooding. J. Environ. Hort. 12(3):138-141.

Warren, K. Frank Schmidt & Son, P.O. Box 189 Boring, Oregon 97009.