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All particles matter: the impact of characterizing 
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INTRODUCTION Knowledge	 of	 substrate	 particle	 size	 and	 shape	 is	 beneficial	 for	 reasons	 such	 as	increasing	 product	 efficiency,	 ensuring	 specified	 standards,	 and	maximizing	 plant	 growth.	Classification	of	aggregate	materials	has	 long	been	analyzed	on	 the	basis	of	sieve	analysis.	Sieves	work	by	separating	aggregate	materials	by	a	particle’s	2nd	smallest	dimension	(Allen,	1997).	 The	 material	 is	 then	 expressed	 as	 a	 cumulative	 or	 differential	 distribution	 curve	which	reflects	the	percent	mass	of	the	material	retained	or	passed	through	a	sieve	(Weiner,	2011).	 Despite	 its	 simplistic	 nature,	 this	 is	 a	 very	 crude	 and	 rudimentary	 method	 of	characterizing	materials.	There	are	drawbacks	to	sieve	analysis	such	as:	reduced	efficacy	in	worn	screens,	finite	number	of	sieves,	time	consuming,	data	subjected	to	human	error,	and	no	capacity	for	shape	parameters	(Rauch	et	al.,	2002;	Vaezi	et	al.,	2012).	Since	 the	 turn	of	 the	millennium,	digital	 analysis	 has	 gained	 interest	 in	 the	 fields	 of	biosystems	 and	 civil	 engineering.	 The	 applicability	 of	 this	 newer	 technology	 to	 determine	size	and	shape	distributions	of	aggregate	materials	has	been	well	established	in	these	fields	(Rauch	et	al.,	2002;	Vaezi	et	al.,	2012).	Engineers	have	recognized	the	advantages	of	digital	analysis	to	include	attributes	such	as	large	repeatability,	small	sample	sizes,	non-destructive	nature,	and	robustness	of	data.	There	 are	 numerous	 commercially	 available	 imaging	 devises/programs	 capable	 of	distinguishing	particle	size	and	shape.	The	Computerize	Particle	Analyzer	2	(CPA-2)	is	one	of	three	units	introduced	by	W.S.	Tyler’s	parent	company,	Haver	&	Boecker,	for	use	in	material	gradation	(Figure	1).	Samples	are	placed	into	a	feed	funnel	and	gradually	deposited	onto	a	vibrating	channel.	The	particles	 transverse	 the	channel	and	are	deposited	onto	a	conveyor	system.	As	every	particle	 leaves	 the	 conveyor,	 it	passes	between	 the	 imaging	device	 and	a	high	intensity	LED	backlight.	The	camera	utilizes	line-scan	technology	which	scans	a	line	of	2,048	 pixels	 20,000	 times	 per	 second.	 By	 merging	 successive	 line	 scans,	 the	 CPA-2	 can	discern	the	outline	of	each	particle	greater	than	34	microns.	Utilizing	this	equipment	could	give	insight	to	the	influence	of	particle	size	and	shape	of	container	substrate	characteristics.	However,	 in	 order	 to	 establish	 the	 validity	 of	 new	 testing	 technology,	 the	 results	 must	compare	favorably	to	traditional	testing	techniques.	The	 objective	 of	 this	 study	 is	 two-fold:	 evaluate	 the	 material	 limitations	 of	 sieve	analysis	with	respect	to	particle	length	to	width	ratio	(L:W)	and	time,	and	validate	the	use	of	the	CPA-2	with	traditional	sieve	analysis	using	capable	materials	and	techniques.	
MATERIALS AND METHODS 

Sieve limitations In	 order	 to	 evaluate	 material	 limitations	 of	 sieve	 analysis,	 particles	 with	 accurate	dimensions	were	created	using	2-,	3-,	and	6-mm	thick	acrylic	sheets	and	a	laser	cutter	(Zing	24,	Epilog	Laser,	Golden,	Colorado).	To	isolate	the	effect	of	particle	L:W,	the	width	(w)	of	the	particles	were	cut	equal	to	the	height	(h)	of	the	acrylic	sheets	(i.e.,	2	mm	w	×	2	mm	h).	Only	a	particle’s	 length	 (l)	 and	width	will	 be	 used	 as	 descriptive	 values	 from	 this	 point	 forward.	Eight	L:W	ratios,	ranging	from	1:1	to	8:1,	were	cut	in	each	width	(2,	3,	and	6	mm)	so	that	the	smallest	particle	evaluated	was	2×2	mm	and	the	largest	was	6×48	mm.	Particle	widths	were	evaluated	 separately.	 For	 each	 width,	 100	 particles	 of	 each	 L:W	 ratio	 were	 mixed	 to	represent	 a	 heterogeneous	 mixture	 of	 800	 particles.	 Each	 heterogeneous	 sample	 was	
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dispersed	onto	the	largest	sieve	of	a	stack	containing	12	sieves.	The	sieve	sizes	used	were	19,	16,	12.5,	9.5,	6.3,	5.6,	4.75,	4,	3.35,	2.8,	2.36,	and	2	mm.	The	samples	were	agitated	using	a	Ro-Tap	 (Model	B,	W.S.	Tyler,	Mentor,	Ohio)	 then	hand	sorted	and	counted.	To	observe	 run	time	 effect,	 samples	 were	 run	 for	 1,	 2,	 3,	 4,	 and	 5	 mins.	 Each	 sample	 at	 each	 time	 was	replicated	3	times.	

	Figure	1.	Tyler	(Haver)	computer	particle	analyzer	2	conveyor.	Number	 of	 particles	 falling	 within	 each	 sieve	 was	 modeled	 following	 a	 generalized	linear	 model,	 assuming	 a	 multinomial	 distribution	 for	 the	 response	 (multinomial	distribution	with	cumulative	logit	link).	Fixed	effects	in	the	model	were	given	by	the	particle	L:W,	 runtime,	 and	 the	 interaction	 runtime	 by	 L:W.	 Repetitions	 within	 each	 time	 and	 L:W	ratio	were	considered	random	effects..	All	data	were	subjected	to	PROC	GLIMMIX	(SAS	9.4,	SAS,	Cary,	North	Carolina).	All	significances	were	at	α=0.05.	
CPA-2 validation Sieve	analysis	is	expressed	in	terms	of	percent	mass	retained	while	the	CPA-2	values	are	weighted	by	number	of	particles	and	can	be	sorted	by	standard	or	custom	size	classes.	The	 CPA-2	 obtains	 particle	 size	 by	 applying	 image	 transformation	 algorithms	 for	 each	particle.	Volume	of	a	particle	can	be	calculated	by	the	CPA-2	utilizing	the	equivalent	sphere	model.	If	one	assumes	all	particles	have	the	same	density,	then	mass	equals	volume.	Sand	is	a	material	with	a	fairly	consistent	particle	density.	Given	the	spherical	nature	of	the	material,	it	is	 also	 an	 ideal	 material	 for	 sieve	 analysis.	 Three	 different	 horticultural	 sands	 were	evaluated,	 a	 course,	 medium,	 and	 fine	 textured	 sand.	 Since	 every	 particle	 is	 evaluated,	sample	sizes	were	reduced	by	half	(50	g)	for	the	CPA-2	compared	to	sieve	analysis	(100	g).	The	sieve	sizes	and	size	classes	used	were	4,	2.8,	2,	1.4,	1,	0.71,	0.6,	0.425,	0.25,	0.18,	0.125,	and	0.063	mm.	The	sieve	samples	were	agitated	using	the	same	Ro-Tap	for	5	min.	To	 compare	 both	 gradation	 methods,	 a	 general	 linear	 model	 was	 fitted	 to	 percent	retained	measured	 through	 the	Ro-Tap	and	CPA-2.	Fixed	effects	were	sieve	size,	gradation	method,	 and	 their	 interaction.	Repetitions	within	each	method	were	 considered	a	 random	effect.	Simple	effect	analysis	was	used	to	compare	both	methods	within	each	sieve	size.	



 

 

373 

RESULTS AND DISCUSSION 

Sieve limitations Similar	 trends	 in	 the	 data	were	 recorded	 for	 each	 particle	width	 (2,	 3,	 and	 6	mm).	Therefore,	 only	 the	 results	 from	 the	3	mm	particles	will	 be	discussed.	The	distribution	of	particles	 of	 equal	width	 and	 height	were	 affected	 by	 L:W	 (p=<0.0001),	 time	 (p=<0.0001),	and	the	interaction	term	L:W*time	(p=0.0011).	Summation	curves	of	the	8	L:W	ratios	help	visualize	 the	 influences	 of	 L:W	 and	 time	 across	 sieves	 sizes	 (Figure	 2).	 As	 particle	 L:W	increases,	distribution	across	sieves	also	increases.	No	particles	with	an	8:1	L:W	and	only	a	single	 7:1	 L:W	 particle	 reached	 the	 targeted	 screen	 (2.8	 mm).	 The	 more	 elongated	 the	particle,	the	more	time	is	required	for	that	particle	to	properly	orient	itself	to	pass	through	a	screen.	Time	affects	varying	L:W	ratio	particles	differently.	Time’s	effect	increases	as	particle	L:W	 increases.	The	squarer	or	 rounder	a	particle	 is,	 the	weaker	 the	effect	 time	has	on	 the	distribution	of	the	particle.	

	Figure	2.	 Predicted	 cumulative	 distribution	 of	 3-mm	 particles	 by	 length:	width	 ratio	 and	time.	These	results	show	three	things	concerning	the	retention	of	a	particle	on	a	sieve:	1)	The	width	of	the	particle	is	the	limiting	dimension.	2)	The	length	of	the	particle	is	the	influential	dimension.	3)	Time	is	the	variable	that	influences	particle	length	effect.	The	 significance	 of	 these	 results,	 though	 simplistic	 in	 nature,	 directly	 impact	horticultural	substrate	research.	Many	horticultural	substrates	are	not	spherical	or	cubic	in	nature	and	are	not	appropriate	materials	for	sieve	analysis.	However,	the	limitations	of	sieve	analysis	are	generally	ignored	without	contemplating	the	implications	on	substrate	research	reproducibility.	For	example,	seven	of	the	eight	L:W	ratios	were	collected	on	the	same	sieve.	In	distribution	analysis,	the	assumption	is	that	all	particles	collected	in	a	given	sieve	are	the	same	or	similar,	but	an	8:1	L:W	particle	will	impart	different	characteristics	to	the	substrate	than	 a	 2:1	 L:W	 particle.	 In	 order	 to	 further	 substrate	 research,	 newer	 and	 more	 robust	
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technology	must	be	utilized	to	better	characterize	the	diverse	and	dynamic	materials	used	as	substrates.	
CPA-2 validation Differences	in	distributions	were	observed	between	Ro-tap	and	CPA-2	in	all	three	sand	textures	 (Figures	 3-5).	 One	 source	 of	 error	 could	 have	 occurred	 in	 the	 assumption	 of	consistent	 particle	 density	 due	 to	 sand’s	 varying	mineral	 content.	 Other	 sources	 of	 error	could	 be	 attributed	 to	 particle	 oscillation	 across	 the	measuring	 line,	 improper	 equipment	calibration,	 or	 poor	 transformational	 data	 into	 volumetric	 calculations.	 Volumetric	calculations	assume	that	particles	have	a	consistent	specific	gravity.	For	example,	two	sheets	of	 paper,	 side	 by	 side,	 have	 the	 same	 specific	 gravity	 and	 their	 volume	will	 be	 calculated	proportionately	 equal.	 However,	 a	 ream	 of	 paper	 and	 a	 sheet	 of	 paper	 with	 the	 same	projected	 area	 but	 different	 specific	 gravities	will	 be	 calculated	 disproportionately	 on	 the	basis	of	their	2-D	images.	This	 is	believed	to	be	the	primary	source	of	error	 in	the	CPA-2’s	distributions.	A	 larger,	 flat	particle	will	have	a	calculated	volume	higher	 than	 its	mass	and	skew	the	distributions	toward	larger	sieve	sizes.	Unlike	 traditional	 sieve	 analysis,	 singular	 calculations	 like	 volume	 are	 only	 a	 small	computation	 in	 the	 large	array	of	 functions	 the	CPA-2	uses	 to	characterize	particles.	From	container	characteristics	(air,	water,	and	bulk	density)	imparted	by	particle	size	and	shape,	to	the	engineering	processes	that	created	them,	this	instrument	has	immediate	implications	into	 understanding	 particles’	 effect	 in	 container	 production.	 Once	 the	 unique	 features	 of	substrates	 are	 discovered,	 the	 wealth	 of	 knowledge	 and	 information	 could	 lead	 to	 many	solutions	to	decade-long	questions.	

	Figure	3.	Differential	distribution	of	coarse	sand	measured	by	Ro-Tap	and	CPA-2.	
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	Figure	4.	Differential	distribution	of	medium	sand	measured	by	Ro-Tap	and	CPA-2.	

	Figure	5.	Differential	distribution	of	fine	sand	measured	by	Ro-Tap	and	CPA-2.	
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